PMC-33 系列

三相数字式多功能测控电表 用户说明书

 $(\mathsf{PMC\text{-}33M/33I/33V})$

(V1.1)

深圳市中电电力技术股份有限公司 Ceiec Electric Technology Inc.

危险和警告

本设备只能由专业人士进行安装,对于因不遵守本手册的说明所引起的故障, 厂家将不承担任何责任。

触电、燃烧或爆炸的危险

- ▶ 设备只能由取得资格的工作人员才能进行安装和维护。
- ▶ 对设备进行任何操作前,应隔离电压输入和电源供应,并且短路所有电流互感器的二次绕组。
- ▶ 要用一个合适的电压检测设备来确认电压已切断。
- ▶ 在将设备通电前,应将所有的机械部件,门和盖子恢复原位。
- ▶ 设备在使用中应提供正确的额定电压。

不注意这些预防措施可能会引起严重伤害。

本说明书版权属深圳市中电电力技术股份有限公司所有,未经书面许可,不得复制,传播或使用本文件及其内容, 违犯者将要对损坏负责。深圳市中电电力技术股份有限公司保留所有版权。

我们已经检查了本手册关于描述硬件和软件保持一致的内容。由于不可能完全消除差错,所以我们不能保证完全的一致。本手册中的数据将定期审核,并在下一版的文件中做必要的修改,欢迎提出修改建议。以后版本中的变动不再另行通知。

目 录

1.	概述	1
	1.1 功能介绍	1
	1.2 系统应用	2
2.	技术指标	3
	2.1 环境条件	3
	2.2 额定参数	3
	2.3 测量精度	3
	2.4 电气绝缘性能	4
	2.5 机械性能	4
	2.6 电磁兼容性能	4
3.	功能介绍	6
	3.1 电能	6
	3.2 功率符号	6
	3.3 通信功能	7
	3.4 在线升级功能	7
4.	典型接线图	8
	4.1 星形系统的接线	8
	4.2 角形系统的接线	9
5.	安装使用	10
	5.1 安装	10
	5.2 端子接线	11
	5.3 面板操作	11
6.	装置故障分析	17
7.	质量保证	18
	7.1 新装置质量保证	18
	7.2 装置升级	18
	7.3 装置质保限制	18
8.	附图	19
	8.1 面板与端子图	19
9.	手册变更记录	22
10.	联系我们	23

1. 概述

1.1 功能介绍

PMC-33 系列三相数字式多功能测控电表,广泛用于工业、商业、民用电力系统和变电站中。其中 PMC-33I 是三相电流表,PMC-33V 是三相电压表,PMC-33M 是包含三相电流和电压的多功能测控电表。PMC-33 系列电表以工业级微处理器为核心,处理速度高,具有很高的性价比,独立应用在仪表控制盘、开关柜、UPS 系统等场合,为用户节省大量投资和使用空间。

以下将介绍 PMC-33 系列装置的功能、选型和使用。

功能	项目	PMC-33M	PMC-33I	PMC-33V
	三相电压	$\sqrt{}$		$\sqrt{}$
	三相电流	$\sqrt{}$	\checkmark	
	中性点电流	$\sqrt{}$		
	三相有功功率	$\sqrt{}$		
	三相无功功率	\checkmark		
	三相视在功率	$\sqrt{}$		
实时测量值	三相功率因数	V		
	正向有功电能	$\sqrt{}$		
	反向有功电能 正向无功电能	\checkmark		
		\checkmark		
	反向无功电能	$\sqrt{}$		
	视在电能	\checkmark		
	频率	\checkmark		V
通讯	RS-485口(2线式、半双工,最	- 生而	选配 选配	·生而]
地爪	高19200bps) MODBUS协议	た。		选配
在线升级	在线升级装置的软件	选配	选配	选配

表 1.1 基本功能

角形线系统,各相的相电压/有功功率/无功功率/视在功率/功率因数均无意义。

灵活简捷的用户界面

装置配有高亮度显示液晶面板。电压、电流、有功功率、无功功率、频率、电能等所有监测量都可以在面板显示。能够设置电压互感器(PT)接线方式和变比、电流互感器(CT)变比、通信波特率、通信规约、通信 ID 号等。修改装置设置时,必须先输入正确的口令。

远程通信和联网功能

装置自带 RS-485 通信口,波特率最高可达 19200bps。一个 RS-485 网能在 1200 米距离内用屏蔽双绞线同时挂接 32 个 PMC-33 系列或其它监控智能仪表,然后通过 CEIEC-1210B 即 RS-485/RS-232 转换器,与微机连成一个监控系统。

针对本装置的应用,本公司开发了一系列电力监控系统组态软件,根据被监控系统的规模,选配相应数量的电力测控智能装置,用户掌握最基本的微机使用常识即可在微机上安装监控软件,然后按照提示设置装置的工作方式和基本参数,就可进入实时监控运行状态。

1.2 系统应用

PMC-33 系列有广泛的用途,可以应用于任何需要用电和配电的地方,主要有:

- 工厂动力系统自动化、负荷控制;
- SCADA、DCS、EMS 集成厂商;
- 变电站综合自动化;
- 发电厂电气 DAS;
- 智能楼宇系统;
- 无功补偿系统。

2. 技术指标

2.1 环境条件

- a) 运行温度: -25℃~+70℃
- b) 存储温度: -40℃~+85℃
- c) 大气压力: 70kPa~106kPa
- d) 相对湿度: 5%~95% (无冷凝)

2.2 额定参数

- a) 装置工作电源
 - 95 250VAC/DC, 47-440Hz
- b) 电压输入
 - 57.7/100V-400/690V AC
 - 功耗: < 0.5VA/相
 - 精度范围: 10V~1.2Un
 - 频率: 50Hz/60Hz
 - 过载能力: 1.2Un,连续工作;2Un,允许 1s

c) 电流输入

- 额定电流: 5A、1A
- 功耗: < 0.3VA/相(额定时)
- 精度范围: 额定 5A: 5mA~6A 额定 1A: 1mA~1.2A
- 过载能力: 1.2ln,连续工作 20ln,允许1s

d) 通信接口

- 接口类型: RS-485, 2线方式
- 工作方式: 半双工
- 通信速率: 1200、2400、4800、9600、19200 bps
- 通信规约: MODBUS

2.3 测量精度

表 2.3 准确度指标

参数	精度	分辨率
电压	±0.2%	0.01V
电流	±0.2%	0.001A
有功功率	±0.5%	0.001kW

无功功率	±0.5%	0.001kvar
视在功率	±0.5%	0.001kVA
有功电能	1级	0.1kwh
无功电能	2级	0.1kvarh
功率因数	±1.0%	0.001
频率	±0.02Hz	0.01Hz
中性点电流	±1.0%	0.001A

角形接线系统,各相的相电压/有功功率/无功功率/视在功率/功率因数均无意义。

2.4 电气绝缘性能

a) 介质强度

符合GB/T 14598.3-2006规定。工频电压2kV,时间1分钟。

b)绝缘电阻

符合GB/T 14598.3-2006规定。500V兆欧表测试,绝缘电阻值大于 100MΩ。

c) 冲击电压

符合GB/T 14598.3-2006规定。承受1.2/50µs峰值为5kV的标准雷电波的冲击。

2.5 机械性能

a)振动

- 振动响应: 符合 GB/T11287-2000 标准, 严酷等级为 1 级;
- 振动耐久性: 符合 GB/T11287-2000 标准, 严酷等级为 1 级。

b)冲击

- 冲击响应: 符合 GB/T14537-1993 标准, 严酷等级为 1 级;
- 冲击耐久性: 符合 GB/T14537-1993 标准, 严酷等级为 1 级。

c)碰撞

符合GB/T14537-1993标准,严酷等级为1级。

2.6 电磁兼容性能

a)静电放电抗扰度

符合GB/T 17626.2-2006 静电放电抗扰度试验规定,严酷等级为3级。

b) 射频电磁场辐射抗扰度

符合GB/T 17626.3-2006 电快速瞬变脉冲群抗扰度试验规定,承受10V/m的最严酷等级。

c) 电快速瞬变脉冲群抗扰度

符合GB/T 17626.4-2008电快速瞬变脉冲群抗扰度试验规定,严酷等级为3级。

d) 浪涌抗扰度

符合GB/T 17626.5-2008 浪涌抗扰度试验规定,严酷等级为3级。

e)射频传导抗扰度

符合GB/T 17626.6-2008 (IEC 61000-4-6: 2006) 规定,严酷等级为3级。

f) 工频磁场抗扰度

符合GB/T 17626.8-1998(IEC 61000-4-8: 1998)规定,严酷等级为4级。

g)振荡波抗扰度

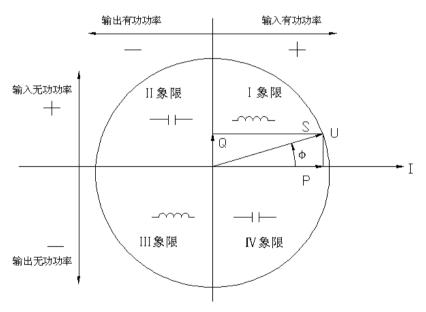
符合GB/T 17626.8-2006 (IEC 61000-4-8: 2001) 规定,严酷等级为3级。

3. 功能介绍

本章介绍 PMC-33 系列装置在测量方面的基本功能。

3.1 电能

PMC-33M 具有电能测量功能,基本的电能参数包括:正向有功电能(kWh)、反向有功电能(kWh)、正向无功电能(kvarh)、反向无功电能(kvarh)和视在电能(kVAh),读数分辨率为 0.1。最大值为 99,999,999.9,超出此值将翻转,重新累计。通过面板,可以将所有电能数据清零,也可对正向有功电能、反向有功电能、正向无功电能、反向无功电能和视在电能设置底值;通过通信,可以将所有电能数据清零,也可对正向有功电能、反向有功电能、正向无功电能、反向无功电能和视在电能设置底值。


3.2 功率符号

PMC-33M 提供双向的功率计算,功率及功率因数的极性表示如图 3.1 所示。

总视在功率有两种计算方法,分别是:标量法和矢量法。可以通过装置面板或通信整定,两种计算方法公式如下:

向量法: $kVA_{total} = \sqrt{kW_{total}^2 + k \operatorname{var}_{total}^2}$

标量法: $kVA_{total} = kVA_a + kVA_b + kVA_c$

功率因数符号可以选择为 IEC、IEEE 和-IEEE 三种的方式,可以通过面板或通信整定。其中,-IEEE 的符号定义与 IEEE 的相反。IEC 与 IEEE 两种功率因数符号的定义如图 3.2 所示。

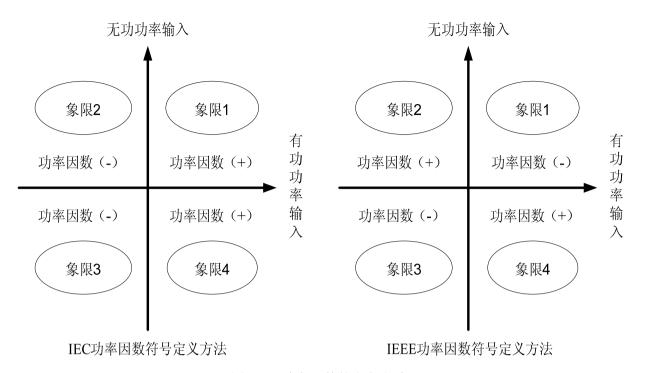


图 3.2 功率因数的定义方法

当装置显示的功率或功率因数正负号与实际输入不一致时,有可能是接入装置的电流接线反相,如不方便更改接线时,可以通过装置面板整定或通信整定将电流方向调整过来。

3.3 通信功能

装置可提供 1 路 RS-485 通信口,采用 485 专用隔离芯片隔离并带有保护电路,可以防止共模、差模电压干扰、雷击和误接线损坏通信口。

RS-485 通信接口支持 MODBUS 通信规约, 波特率 1200 bps, 2400 bps, 4800 bps, 9600 bps, 19200 bps 可选, 奇偶校验位和停止位都可以进行设置。

针对本装置的应用,本公司开发了一系列电力监控系统组态软件,根据被监控系统的规模,选配相应数量的电力测控智能装置,用户掌握最基本的微机使用常识即可在微机上安装监控软件,然后按照提示设置装置的工作方式和基本参数,就可进入实时监控运行状态。

3.4 在线升级功能

装置支持通信口在线升级,通过 RS-485 通讯口连接,使用"PMC 程序在线升级软件"进行装置程序的升级。对装置已经在现场投运,但需要对装置功能进行更新或需要升级装置软件时,可以通过在线升级功能在现场直接将装置升级,不需要拆卸装置。

装置软件升级时只需要将新的应用程序的"PMC-33*.txt"文件通过 PMC 程序在线升级软件发送至装置即可。升级方式分为"空白升级"和"覆盖升级"两种方式。当装置中没有应用程序或没有完整的应用程序时请选择"空白升级";当装置中已经有应用程序在正常运行,但需要更新下载升级后的应用程序时请选择"覆盖升级",升级后将会覆盖掉原来存在的应用程序。

4. 典型接线图

下文说明了各种情况下的典型接线图,电压互感器简称 PT,电流互感器简称 CT。

PT一次侧必须有断路器或熔断器提供保护,如果使用的 PT 额定容量大于 25VA,则 PT 二次侧也要装熔断器; CT 应接到短接端子或测试盒上,以保证 CT 接线的安全。

PT 和 CT 一次侧的励磁将在 PT 和 CT 二次侧电路产生较大的电压和电流, 所以在安装仪表时一定要有必要的安全措施, 例如拆下 PT 的熔断器、短接 CT 二次侧等。

4.1 星形系统的接线

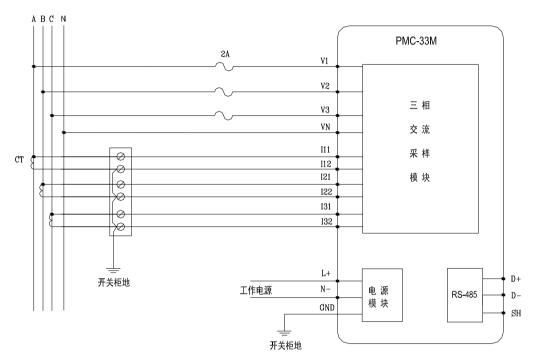


图 4.1.a 四线星形系统: 无电压互感器 (PT) 的直接接线 (400V/690V 及以下系统)

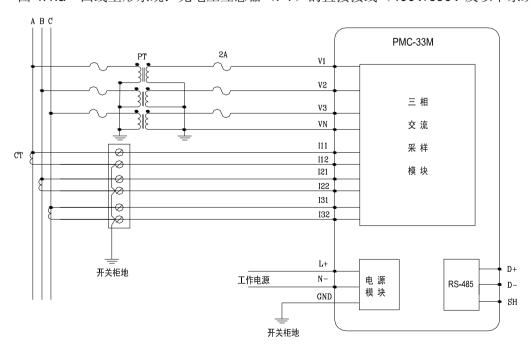


图 4.1.b 星形系统: 使用 3 个 PT (适用于 400V/690VAC 以上系统)

4.2 角形系统的接线

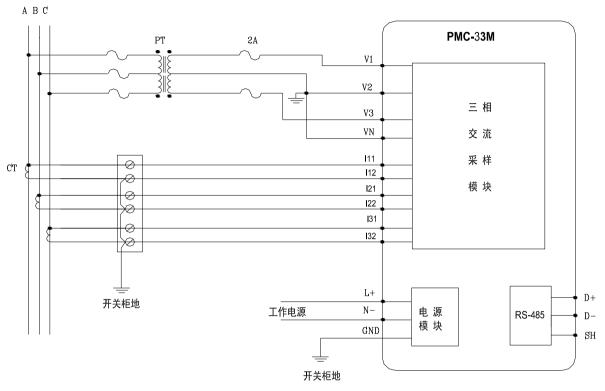


图 4.2.a 角形系统: 使用 2 个 PT 和 3 个 CT

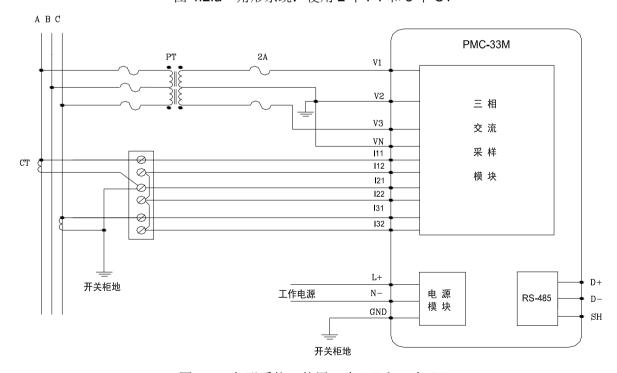


图 4.2.b 角形系统: 使用 2 个 PT 和 2 个 CT

5. 安装使用

5.1 安装

a) 环境

装置应安装在干燥、清洁、远离热源和强电磁场的地方。

b) 安装位置

通常安装在开关柜中,可使它不受油、污物、灰尘、腐蚀性气体或其他有害物质的侵袭。安装时要注意检修方便, 有足够的空间放置有关的线、端子排、短接板和其他必要的设备。

c) 安装尺寸

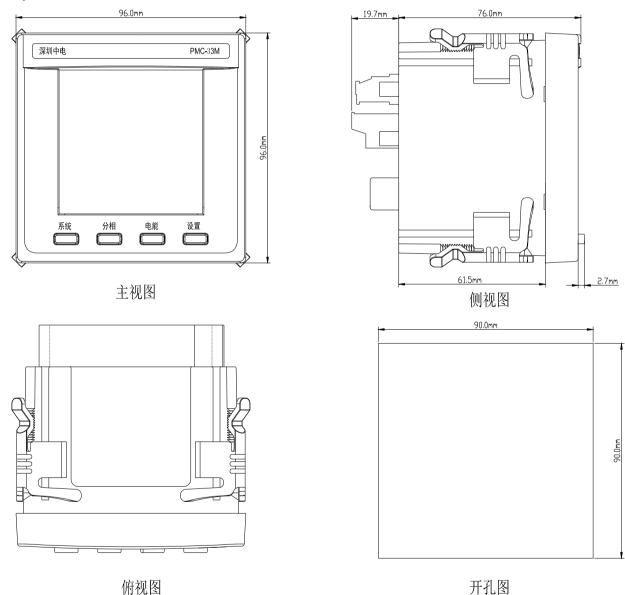


图 5.1 PMC-33 系列装置安装尺寸

5.2 端子接线

5.2.1 工作电源

用直流系统时,正极接 L/+端,负极接 N/-端。 用交流系统时,相线接 L/+端,中性线接 N/-端。

5.2.2 接地线的连接

装置的接地端子必须与大地相连,可通过接地端子(标记为GND)用导线接到开关柜地。

5.2.3 电压电流输入接线

a) 三相电压输入(V1、V2、V3、VN)

对于所有与功率和电能有关的测量,相位以 V1 输入为参考,频率测量也是指 V1 的频率,所以 V1 输入端必须正确连接才能保证功率、电能、频率读数准确。但 V1 并不影响其它各路电压电流的测量(相位除外)。

本装置可以直接接入 400V/690VAC 的星形系统。如果被监测系统的电压高于 400V/690VAC,则需要使用 PT。PT 用来把星形系统相电压、三角形系统线电压按比例减小到装置满刻度输入以内。

为了正确使用 PMC-33 装置, PT 的选择很重要,请按照以下要求选择 PT 的参数:

- 对于星形系统, PT 原边额定值应等于系统相电压额定值,或者略高于相电压额定值。
- 对于三角形系统, PT 原边额定值应等于系统线电压额定值。
- 无论星形或三角形系统, PT 副边额定值都必须在额定电压输入范围以内。
- PT 的额定负载能力必须大于所有并接于 PT 上的本装置和其他接入设备负荷的总和。
- PT 的精度直接影响本装置总的测量精度,建议用户选用精度高于 0.5 级的 PT。

b) 三相电流输入(I11、I12、I21、I22、I31、I32)

PMC-33I、PMC-33M 必须使用 CT 才能测量各相的电流。三相 CT 的变比参数是统一整定的, 所以三相 CT 变比必须相同。电流输入选项如下:

- 本装置三相电流额定输入有 5A 和 1A 两种配置。
- CT 的额定负载能力必须大于本装置、接线电缆、其他接入设备负荷的总和。通常 CT 原边额定值根据最大负荷来选择,并选用最接近标准规格的 CT。
- CT 的精度也影响本装置总的测量精度,建议用户选用精度高于 0.5 级的 CT。另外, PT 和 CT 的角差不一致也会影响功率、电能等的测量精度。

5.2.4 通信接线

本装置具有一个两线方式的 RS-485 通信口,端子标记为 SH、D+、D-。采用高速光耦隔离并带有保护电路,可以防止共模、差模电压干扰、雷击和误接线损坏通信口。

RS-485 通信方式允许一条总线上最多接 32 台 PMC 系列仪表,这时需要一个 RS-232C/RS-485 转换器如 CEIEC-1210B。通信电缆可以采用普通的屏蔽双绞线,总长度不能超过 1200 米,各个设备的 RS-485 口正负极性必须连接正确,电缆屏蔽层一端接地。如果屏蔽双绞线较长,建议在其末端接一个 120Ω 的电阻以提高通信的可靠性。

5.3 面板操作

所有安装接线完毕并检查无误后,便可通电开机。开机运行后需要重设时间才能保证走时正确,可以通过面板设置时间。

以下章节将介绍如何利用前面板按键来整定参数。

5.3.1 按键操作

1) PMC-33I 按键操作

按键	显示模式	设置模式		
按键	业小俣八	参数选择	修改参数	
"◀"			光标左移一位	
" A "	显示三相电流,此时按一 键无效。	浏览上一个参数	数值递增	
"▼"	(AC) 11/1/C	浏览下一个参数	数值递减	
"设置"	长按进入设置模式	长按退出到显示模式。短按一下,进入参数态;改变数值后,再按一下,确认当前参数		

2) PMC-33V 按键操作

+ 	日二掛子	设置	模式			
按键	显示模式	参数选择	修改参数			
"相/线"	在相电压、线电压、频 率测量显示界面切换。		光标左移一位			
"▲"	无效	浏览上一个参数	数值递增			
"▼"	无效	浏览下一个参数	数值递减			
"设置"	长按进入设置模式	长按退出到显示模式。短 态;改变数值后,再按一				

3) PMC-33M 按键操作

按键	显示模式	设置模式		
1女娃		参数选择	修改参数	
"系统 /◀"	系统组内切换显示参数。		光标左移一位	
"分相 /▲"	分相组内切换显示参数。	浏览上一个参数	数值递增	
" 电 能 /▼"	切换显示电能数据。	浏览下一个参数	数值递减	
"设置/€"	长按进入设置模式		式。短按一下,进入参数修改状再按一下,确认当前参数值。	

5.3.2 电量显示

1) PMC-33I 液晶显示内容

显示内容	第一排显示	第二排显示	第三排显示
屏 1	IA	IB	IC

2) PMC-33V 液晶显示内容

PMC-33V 接线(星型)

显示内容	第一排显示	第二排显示	第三排显示
屏 1	VAB	VBC	VCA
屏 2	VA	VB	VC

PMC-33V 接线(角型)

显示内容	第一排显示	第二排显示	第三排显示
屏 1	VAB	VBC	VCA
屏 2		频率 ¹ (Hz)	

3) PMC-33M 液晶显示内容

PMC-33M 接线(星型)

显示内容		第一排显示	第二排显示	第三排显示	
	屏 1	I (平均电流)	ΣΡ	PF	
	屏 2	VLL(平均线电压)	ΣQ	频率 ¹ (Hz)	
系统测量组	屏 3	ΣΡ	ΣQ	ΣS	
	屏 4	VIn(平均相电压)	I (平均电流)	ΣP	
	屏 5	中性点电流 10			
	屏 1	IA	IB	IC	
	屏 2	VA	VB	VC	
	屏 3	VAB	VBC	VCA	
分相测量组	屏 4	PA	PB	PC	
	屏 5	QA	QB	QC	
	屏 6	SA	SB	SC	
	屏 7	PFA	PFB	PFC	
	屏 1	正向有功电能(kWh)			
	屏 2	反向有功电能(kWh)			
电能测量组	屏 3	正向无功电能(kvarh)			
	屏 4	反[反向无功电能(kvarh)		
	屏 5	视在电能(kVAh)			

PMC-33M 接线(角型)

显示内容		第一排显示	第二排显示	第三排显示
系统测量组	屏 1	I (平均电流)	ΣΡ	PF
	屏 2	VLL(平均线电压)	ΣQ	频率 ¹ (Hz)
	屏 3	ΣΡ	ΣQ	ΣS
	屏 4	VLL (平均线电压)	I (平均电流)	ΣΡ
	屏 5	中性点电流 10		
分相测量组	屏 1	IA	IB	IC

	屏 2	VAB	VBC	VCA
电能测量组	屏 1	正向有功电能(kWh)		
	屏 2	反向有功电能(kWh)		
	屏 3	正向无功电能(kvarh)		
	屏 4	反向无功电能(kvarh)		
	屏 5	视在电能(kVAh)		

注 1: 频率根据 A 相电压进行计算。

电量显示说明

- 33M 的角形系统中,各相测量组中只有电流及线电压有意义;
- 频率根据 A 相电压进行计算:
- 常规显示模式下,同时长按"**分相/**▲"和"电能/▼"键,将进入显示自检状态,交替的全亮或全灭,可用以检查液晶是否不亮的现象。自检结束或按任意键,将退出自检,返回到默认显示界面。

5.3.3 参数设置

a) 参数设置模式菜单结构图

b) 参数设置模式内容

可对软件运行的基本参数进行设置,参数操作带密码保护。如果输入密码错误,只能浏览数据,不能进行修改。详细的页面说明如下:

		<u> </u>	
参数设置菜单 (一级菜单左对齐, 二级菜单右对齐)	说明	范围/待选项	默认值
PROGRAMMING	进入参数编辑状态		
PASSWORD	输入密码	0~9999	0
SET PASS	是否设置密码?	YES/NO	NO
NEW PASS		0~9999	0
TYPE ¹	设定接线方式	WYE 四线星形 DELTA 三角形 DEMO 演示模式 ¹ ²	WYE
PT ¹	设置 PT 变比	1~2,200	1
CT ²	设置 CT 变比	5A 配置 1~6,000 1A 配置 1~30,000	1
COM SET ³	通信设置		
ID^3	ld 设置	1~247	100
BAUD ³	波特率设置	0:1200 , 1:2400 , 2:4800 , 3:9600 , 4:19200;	3
CONFIG ³	校验位设置	8N2, 8O1, 8E1, 8N1, 8O2, 8E2;	8E1
PF SET ^{1, 2}	设置功率因数定义方法	IEC/IEEE/-IEEE	IEC
KVA SET ^{1, 2}	设置 kVA 算法	V 向量法 S 标量法	V
SET ENGY ^{1, 2}	电能底值设置?	YES / NO	NO
	设置正向有功电能底值	0~99,999,999.9	0
1 2			0
kvarh ^{1, 2}	设置正向无功电能底值	0~99,999,999.9	0
-kvarh ^{1, 2}		0~99,999,999.9	0
	设置视在电能底值		0
CLR ENGY ^{1, 2}	电能清除?	YES / NO	NO
CT REV ²	电流反相投退?		NO
I1 REV ²	设置 I1 反相?		NO
I2 REV ²	设置 12 反相?		NO
I3 REV ²	设置 I3 反相?		NO
BLTO SET	背光超时设置	0~60 分钟 (0表示常亮)	3
INFO	是否查看信息?	YES/NO	NO
	显示固件版本号(只读)	例如: 3M 1.20.00	
	显示规约版本		 注: 4
UPDATE	软件版本最新日期(只读)	例如: UPDATE090304 表示软件更新时间为 09 年 3 月 4 号	Tanks

- 注 1: PMC-33I 无此菜单。
- 注 2: PMC-33V 无此菜单。
- 注 3: 当选型无 RS485 通信时, 无此菜单;
- 注 4: 当无通信时, 无此菜单。

c) 参数设置说明

- ✓ 如果设置参数超出了范围,显示面板会显示出错提示"ERR",不会被实际写入仪表;
- ✓ 为了防止功率溢出,对于 PMC-33M, PT 变比*CT 变比*二次侧额定电压(100V)*二次侧额定电流不能大于 790000000(注:额定电压指线电压),否则不会被写入仪表:
- ✓ 如果输入密码错误,则只能查看参数值,不能进行修改;
- ✓ 密码输入正确时,在每页参数界面下,先按一下"**设置**",出现光标,这时才能修改参数值。修改完毕,再按一下此键,将确定此参数值。

d) 改变口令

装置出厂时的口令设置为 0,若要改变参数设置,必须先输入正确的口令,否则所有的参数只能显示而不能改变。密码可由 $1\sim4$ 位的 $0\sim9$ 的数字组成。

注:为了防止遗忘密码,修改密码以后请将密码记录下来,忘记密码将不能进入整定模式。在输入密码进入整定模式以后,屏幕会出现输入密码页面,此时输入新密码即可。

6. 装置故障分析

▶ 无显示

- 检查电源电压和其他接线是否正确,电源电压应在工作范围以内;
- 关闭装置和上位机,再重新开机。

▶ 装置上电后工作不正常

• 关闭装置和上位机,再重新开机。

> 电压或电流读数不正确

- 检查接线模式设置是否与实际接线方式相符;
- 检查电压互感器 (PT) 、电流互感器 (CT) 变比是否设置正确;
- 检查 GND 是否正确接地;
- 检查屏蔽是否接地;
- 检查电压互感器 (PT) 、电流互感器 (CT) 是否完好。

▶ 功率或功率因数读数不正确,但电压和电流读数正确

比较实际接线和接线图的电压和电流输入,检查相位关系是否正确。比较实际接线和接线图的电压和电流输入,检查相位关系是否正确。

➤ RS-485 通信不正常

- 检查上位机的通信波特率、ID、校验方式和通讯规约设置是否与装置一致;
- 数据位应为 8, 校验方式可选择无、奇、偶校验,相应停止位分别为 2 位、1 位;
- 检查 RS-232/RS-485 转换器是否正常:
- 检查整个通信网线路有无问题(短路、断路、接地、屏蔽线是否正确单端接地等);
- 关闭装置和 PC 主机,再开机重试:
- 通讯线路长建议在通讯线路的末端并联约 120 欧的匹配电阻。

注:如果有一些无法解决的问题,请及时与我们公司的售后服务部门联系。

7. 质量保证

7.1 新装置质量保证

所有售给用户的新装置,在售给用户之日起一定年限内,对其因设计、材料和工艺缺陷引起的故障实行免费质量保证。如经认定产品符合上述质保条件,供应商将免费修复和更换。

供应商可能要求用户将装置寄回生产厂,以确认该装置是否属于免费质保范围,并修复装置。

7.2 装置升级

所有新装置的用户,均可免费使用本装置的升级软件,本公司也会通过各种渠道来通知用户关于软件升级的信息。

7.3 装置质保限制

以下装置的问题不属免费质保范围:

- 由于不正确的安装、使用、存储引起的损坏。
- 超出产品规定的非正常操作和应用条件。
- 由非本公司授权的机构或人修理了的装置。
- 超出免费质保年限了的装置。

声明:深圳市中电电力技术股份有限公司保留改进说明书所有内容的权利,恕不另行通知。

8. 附图

8.1 面板与端子图

a) PMC-33I 图纸

图 7.1 PMC-33I 前面板图

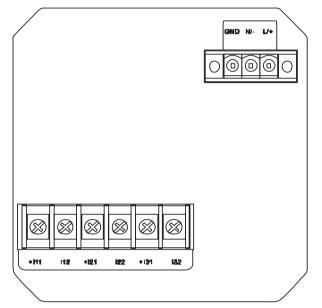


图 7.2 PMC-33I 端子图 (无通信)

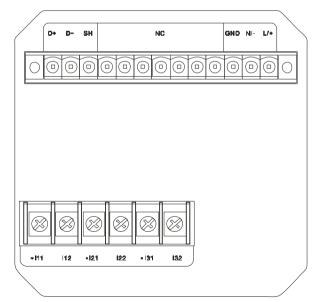


图 7.3 PMC-33I 端子图 (RS-485 通信)

b) PMC-33V 图纸

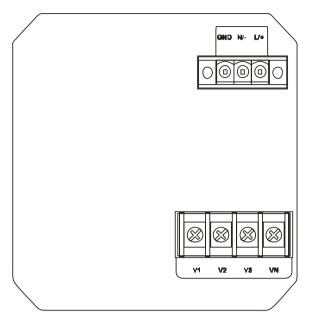


图 7.4 PMC-33V 前面板图

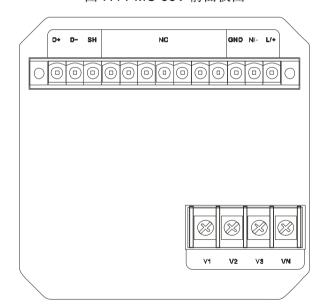


图 7.6 PMC-33V 端子图 (RS-485 通信)

图 7.5 PMC-33V 端子图 (无通信)

c) PMC-33M 图纸

图 7.7 PMC-33M 前面板图 (标准配置)

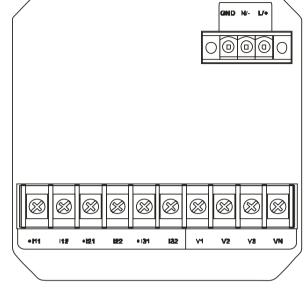


图 7.8 PMC-33M 端子图 (无通信)

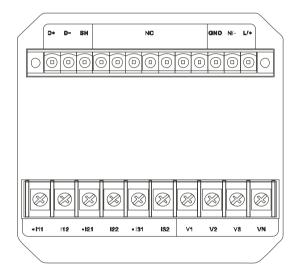


图 7.9 PMC-33M 端子图 (RS-485 通信)

9. 手册变更记录

版本	修订日期	修订摘要
V1.1	2012.12	增加 RS-485 功能、在线升级功能描述。
V1.0	2012.04	第一版说明书。

10. 联系我们

深圳市中电电力技术股份有限公司

地址: 深圳市福田区车公庙泰然工贸园 201 栋 8 楼西

邮编: 518040

总机: 0755-83423089 传真: 0755-83410306

技术服务(售后)电话: 0755-25273351

网址: www.ceiec-electric.com